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Abstract—Characters have commonly been regarded as
the minimal processing unit in Natural Language Process-
ing (NLP). But many non-latin languages have hieroglyphic
writing systems, involving a big alphabet with thousands
or millions of characters. Each character is composed of
even smaller parts, which are often ignored by the previous
work. In this paper, we propose a novel architecture em-
ploying two stacked Long Short-Term Memory Networks
(LSTMs) to learn sub-character level representation and
capture deeper level of semantic meanings. To build a
concrete study and substantiate the efficiency of our neural
architecture, we take Chinese Word Segmentation as a
research case example. Among those languages, Chinese
is a typical case, for which every character contains
several components called radicals. Our networks employ a
shared radical level embedding to solve both Simplified and
Traditional Chinese Word Segmentation, without extra
Traditional to Simplified Chinese conversion, in such a
highly end-to-end way the word segmentation can be
significantly simplified compared to the previous work.
Radical level embeddings can also capture deeper semantic
meaning below character level and improve the system
performance of learning. By tying radical and character
embeddings together, the parameter count is reduced
whereas semantic knowledge is shared and transferred
between two levels, boosting the performance largely. On
3 out of 4 Bakeoff 2005 datasets, our method surpassed
state-of-the-art results by up to 0.4%. Our results are
reproducible, source codes and corpora are available on
GitHub1.

Index Terms—AI Algorithms and Applications, Deep
Learning, Machine Learning Algorithms, Natural Lan-
guage Processing, Neural Networks, Pattern Recognition

1https://github.com/hankcs/sub-character-cws

TABLE I
ILLUSTRATION OF SEMANTIC COMPONENT (SEM.) AND

PHONETIC COMPONENT (PHO.) IN SIMPLIFIED CHINESE (SC)
AND TRADITIONAL CHINESE (TC).

SC Sem. Pho. TC Sem. Pho.
鲤 鱼 里 鯉 魚 里
鲢 鱼 连 鰱 魚 連
河 水 可 河 水 可
沟 水 勾 溝 水 冓
捞 手 劳 撈 手 勞
捡 手 佥 撿 手 僉

I. INTRODUCTION

Unlike English, the alphabet in many non-latin
languages is often big and complex. In those hi-
eroglyphic writing systems, every character can be
decomposed into smaller parts or sub-characters,
and each part has special meanings. But existing
methods often follow common processing steps
in latin flavor [1]–[5], and treat character as the
minimal processing unit, leading to a neglecting of
information inside non-latin characters. Early work
exploiting sub-character information usually treat it
as a separate level from character [6]–[9], ignoring
the language phenomenon that some of those sub-
characters themselves are often used as normal
characters. From this phenomenon, we gained a
new motivation to design a novel neural network
architecture for learning character and sub-character
representation jointly.

In linguists’ view, Chinese writing system is such
a highly hieroglyphic language, and it has a long
history of character compositionality. Every Chinese
character has several radicals (“部首” in Chinese),
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which serves as semantic component for encoding
meaning, or phonetic component for representing
pronouciation. For instance, we listed radicals of
several Simplified and Traditional Chinese char-
acters in Table I. Chinese characters with same
semantic component are closely correlated in se-
mantic. As shown above, carp (鲤) and silverfish
(鲢) are both fish (鱼). River (河) and gully (沟)
are all filled with water (水). To catch (捞) or to
pick up (捡) a fish, one needs to use hands (手).
To exploit those semantic meanings under charac-
ter embedding level, radical embedding emerged
since 2014 [6], [8]–[10]. These early work treated
sub-character and character as two separate levels,
omitting that they can actually be unified as single
minimal processing unit in language model. Instead
of ignoring linguistic knowledge, we respect the
divergence of human language, and propose a novel
joint learning framework for both character and sub-
character representations.

To verify the efficiency of our jointly learnt repre-
sentations, we conducted extensive experiments on
the Chinese Word Segmentation (CWS) task. As
those languages often don’t have explicit delimiters
between words, making it hard to perform later
NLP tasks like Information Retrieval or Question
Answering. Chinese language is such a typical non-
segmented language, which means unlike English
language having spaces between every word, Chi-
nese has no explicit word delimiters. Therefore,
Chinese Word Segmentation is a preliminary pre-
processing step for later Chinese language process
tasks. Recently with the rapid rise of deep learn-
ing, neural word segmentation approaches arose to
reduce efforts in feature engineering [11]–[16].

In this paper, we propose a novel model to dive
deeper into character embeddings. In our frame-
work, Simplified Chinese and Traditional Chinese
corpora are unified via radical embedding, growing
an end-to-end model. Every character is converted
to a sequence of radicals with its original form.
Character embeddings and radical embeddings are
pretrained jointly in Bojanowski et al. [3]’s subword
aware method. Finally, we conducted various ex-
periments on corpora from SIGHAN bakeoff 2005.
Results showed that our jointly learnt character
embedding outperforms conventional character em-
bedding training methods. Our models can improve

performance by transfer learning between characters
and radicals. The final scores surpassed previous
work, and 3 out of 4 even surpassed previous
preprocessing-heavy state-of-the-art learning work.

More specifically, the contributions of this paper
could be summarized as:
• Explored a novel sub-character aware neural

architecture and unified character and sub-
character as one same level embedding.

• Released the first full Chinese character-radical
conversion corpus along with pre-trained em-
beddings, which can be easily applied on other
NLP tasks. Our codes and corpora are freely
available for the public.

II. RELATED WORK

In this section, we review the previous work from
2 directions – radical embedding and Chinese Word
Segmentation.

A. Radical Embedding

To leverage the semantic meaning inside Chinese
characters, Sun et al. [6] inaugurated radical infor-
mation to enrich character embedding via softmax
classification layer. In similar way, Li et al. [7]
proposed charCBOW model taking concatenation
of the character-level and component-level context
embeddings as input. Making networks deeper, Shi
et al. [8] proposed a deep CNN on top of radical em-
bedding pre-trained via CBOW. Instead of utilizing
CNNs, following Lample et al. [17], Dong et al. [9]
used two level LSTMs taking character embedding
and radical embedding as input respectively.

Our work is closely related to Dong et al. [9],
but there are two major differences. In pre-training
phase, their character embeddings were pre-trained
separately, by utilizing conventional word2vec pack-
age, and the radical embeddings are randomly ini-
tialized. While we considered radical units as sub-
characters (parts of one character) and trained the
two level embeddings jointly, following Bojanowski
et al. [3]’s approach. In training and testing phases,
our two-level embeddings are tied up and unified as
the sole minimal input unit of Chinese language.

B. Chinese Word Segmentation

Chinese Word Segmentation has been a well-
known NLP task for decades [18]. After pioneer



Xue et al. [19] transformed CWS into a character-
based tagging problem, Peng et al. [20] adopted
CRF as the sequence labeling model and showed
its effectiveness. Following these pioneers, later
sequence labeling based work [21]–[24] was pro-
posed. Recent neural models [9], [11], [13], [14],
[25], [26] also followed this sequence labeling fash-
ion.

Our model is based on Bi-LSTM with CRF as top
layer. Unlike previous approaches, the inputs to our
model are both character and radical embeddings.
Furthermore, we explored which embedding level
is more tailored for Chinese language, either using
both embeddings together, or even tying them up.

III. JOINT LEARNING FOR CHARACTER
EMBEDDING AND RADICAL EMBEDDING

Previous work treated character and radical as
two different levels, used them separately or used
one to enhance the other. Although radicals are
components of a character (belonging to a lower
level), they can actually be learnt jointly. It is
linguistically more reasonable to put radical embed-
dings and character embeddings in exactly the same
vector space. We propose to train character vector
representation being aware of its internal structure
of radicals.

A. Character Decomposition
Every character can be decomposed into a list of

radicals or components. To maintain character infor-
mation in radical list, we simply add the raw form
of character to its radical list. Taking the linguistic
knowledge that semantic component contains rich-
est meaning of one character into consideration, we
append the semantic component to the end of its
radical list, hence to make the semantic component
appear more than once.

Formally, denote c as a character, r as a radical,
Lc = [r1, r2 · · · rn] as the original radical list of c.
Let rs ∈ Lc be the semantic component of c. Our
decomposition of c will be:

Rc = [c, r1, r2 · · · rn, rs] (1)

B. General Continuous Skip-Gram (SG) Model
Take a brief review of the continuous skip-gram

model introduced by Mikolov et al. [10], applied in
character representation learning.

Given an alphabet, target is to learn a vectorial
representation vc for each character c. Let c1, ..., cT
be a large-scale corpus represented as a sequence
of characters, the objective function of the skipgram
model is to maximize the log-likelihood of correct
prediction. The probability of a context character cy
given cx is computed by a scoring function s which
maps character and context to scores in R.

The general SG model ignores the radical struc-
ture of characters, we propose a different scoring
function s, in order to capture radical information.

Let all radicals form an alphabet of size R. Given
a character c and the radical list Rc ⊂ {1, . . . , R}
of c, a vector representation zr is associated to each
radical r. Then a character is represented by the sum
of the vector representations of its radicals. Thus the
new scoring function will be:

s(cx, cy) =
∑

r∈Rcx

z>r vcy . (2)

This simple model allows learning the represen-
tations of characters and radicals jointly.

IV. RADICAL AWARE NEURAL ARCHITECTURES
FOR GENERAL CHINESE WORD SEGMENTATION

Once character and radical representations are
learnt, one evaluation metric is how much it im-
proves a NLP task. We choose the Chinese Word
Segmentation task as a standard benchmark to
examine their efficiency. One prevailing approach
to CWS is casting it to character based sequence
tagging problem, where our representations can be
applied. A commonly used tagging set is T =
{B,M,E, S}, representing the begin, middle, end
of a word, or single character forming a word.

Given a sequence X consisted of n features as
X = (x1,x2, . . . ,xn), the goal of sequence tagging
based CWS is to find the most possible tags Y∗ =
{y∗1, . . . ,y∗n}:

Y∗ = argmax
Y∈T n

p(Y|X), (3)

where T = {B,M,E, S}.
Since tagging set restricts the order of adjacent

tags, we model them jointly using a conditional
random field, mostly following the architecture pro-
posed by Lample et al. [17], via stacking two
LSTMs with a CRF layer on top of them.
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Fig. 1. Radical LSTM Layer – composition of character representa-
tion from radicals

A. Radical LSTM Layer: Character Composition
from Radicals

In this section, we’ll review RNN with Bi-LSTM
extension briefly, before introducing our character
composition network.

a) LSTM: Long Short-Term Memory Net-
works (LSTMs) [27] are extensions of Recurrent
Neural Networks (RNNs). They are designed to
combat gradient vanishing issue via incorporating
a memory-cell which enables long-range dependen-
cies capturing.

b) Bi-LSTM: One LSTM can only produce
the representation

−→
ht of the left context at every

character t. To incorporate a representation of the
right context

←−
ht , a second LSTM which reads the

same sequence in reverse order is used. Pair of this
forward and backward LSTM is called bidirectional
LSTM (Bi-LSTM) [28] in literature. By concate-
nating its left and right context representations, the
final representation is produced as ht = [

−→
ht;
←−
ht].

We apply a Bi-LSTM to compose character em-
beddings from radical embeddings in both direc-
tions. The raw character is inserted as the first
radical, and the semantic component is appended as
the last radical. The motivation behind this trick is to
make use of LSTM’s bias phenomena. In practice,
LSTMs usually tend to be biased towards the most
recent inputs of the sequence, thus the first one or
last one depends on its direction.

As illustrated in Figure 1, the character 明
(bright) has the radical list of 日 (sun) and 月
(moon) with its raw form and duplicated semantic
radical. Its compositional representation hr

i ∈ R2k

is agglomerated via a Bi-LSTM from these radical
embeddings, where k is the dimension of radical
embeddings.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM…

…

Character 
Representation

Contextual 
Representation

Fig. 2. Character LSTM Layer – capture contextual representation

B. Character Bi-LSTM Layer: Context Capturing

Once compositional character representation hr
i is

synthesized, the contextual representation hc
t ∈ R2d

at every character t in input sentence can be agglom-
erated by a second Bi-LSTM. The dimension d is a
flexible hyper-parameter, which will be explored in
later experiments.

Our architecture for contextual feature capturing
is shown in Figure 2. This contextual feature vector
contains the meaning of a character, its radicals and
its context.

C. CRF Layer: Tagging Inference

We employed a Conditional Random Fields(CRF)
[29] layer as the inference layer. As first order linear
chain CRFs only model bigram interactions between
output tags, so the maximum of a posteriori se-
quence Y∗ in Eq. 3 can be computed using dynamic
programming, both in training and decoding phase.
The training goal is to maximize the log-probability
of the gold tag sequence.

V. EXPERIMENTS

We conducted various experiments to verify the
following questions:

1) Does radical embedding enhance character
embedding in pre-training phase?

2) Whether radical embedding helps character
embedding in training phase and test phase
(by using character embedding solely or using
them both)?

3) Can radical embedding replace character em-
bedding (by using radical embedding only)?

4) Should we tie up two level embeddings?



A. Datasets

To explore these questions, we experimented on
the 4 prevalent CWS benchmark datasets from
SIGHAN2005 [30]. Following conventions, the last
10% sentences of training set are used as develop-
ment set.

B. Radical Decomposition

We obtained radical lists of character from the
online Xinhua Dictionary2, which are included in
our open-source project.

C. Pre-training

Previous work have shown that pre-trained em-
beddings on large unlabeled corpus can improve
performance. It usually involves lots of efforts to
preprocess those corpus. Here we presented a novel
solution.

The corpus used is Chinese Wikipedia of July
2017. Unlike most approaches, we don’t perform
Traditional Chinese to Simplified Chinese conver-
sion. Our radical decomposition is sufficient of
associate character to its similar variants. Not only
traditional-simplified character pairs, those with
similar radical decompositions will also share sim-
ilar vectorial representations.

Further, instead of the commonly used word2vec
[2], we utilized fastText3 [3] to train character
embeddings and radical embeddings jointly. We
applied SG model, 100 dimension, and set both
maximum and minimal n-gram length to 1, as the
radical takes only one token.

D. Final Results on SIGHAN bakeoff 2005

Our baseline model is Bi-LSTM-CRF trained on
each datasets only with pre-trained character embed-
ding (the conventional word2vec), no sub-character
enhancement, no radical embeddings. Then we im-
proved it with sub-character information, adding
radical embeddings, tying two level embeddings up.
The final results are shown in Table II.

All experiments are conducted with standard
Bakeoff scoring program4 calculating precision, re-

2http://tool.httpcn.com/Zi/
3https://github.com/facebookresearch/fastText With tiny modifica-

tion to output n-gram vectors.
4http://www.sighan.org/bakeoff2003/score This script rounds a

score to one digit.

TABLE II
COMPARISON WITH PREVIOUS STATE-OF-THE-ART MODELS OF

RESULTS ON ALL FOUR BAKEOFF-2005 DATASETS.

Models PKU MSR CityU AS
Tseng et al. [21] 95.0 96.4 - -

Zhang and Clark [31] 95.0 96.4 - -
Sun et al. [32] 95.2 97.3 - -
Sun et al. [24] 95.4 97.4 - -
Pei et al. [13] 95.2 97.2 - -

Chen et al. [26] 94.3 96.0 95.6 94.8
Cai et al. [16]♦ 95.8 97.1 95.6 95.3

baseline 94.6 96.0 94.7 94.8
+subchar 95.0 96.0 94.9 94.9
+radical 94.6 96.7 95.3 95.2

+radical -char 94.4 96.5 95.0 95.1
+radical +tie 94.8 96.8 95.3 95.1

+radical +tie +bigram 95.3 97.4 95.9 95.7

call, and F1-score. Note that results with ♦ expur-
gated long words in test set.

E. Model Analysis
Sub-character information enhances character

embeddings. Previous work showed pre-trained
character embeddings can improve performance.
Our experiment showed with sub-character infor-
mation (+subchar), performance can be further im-
proved compared to no sub-character enhancement
(baseline). By simply replacing the conventional
word2vec embeddings to radical aware embeddings,
the score can benefit an improvement as much as
0.4%.

Radical embeddings collaborate well with char-
acter embeddings. By building compositional em-
beddings from radical level (+radical), performance
increased by up to 0.7% in comparison with model
(baseline) on MSR dataset. But we also notice
that: 1) On small dataset such as PKU, radical
embeddings cause tiny performance drop. 2) With
the additional bigram feature, performance can be
further increased as much as 0.6%.

Radical embeddings can’t fully replace character
embeddings. Without character embeddings but use
radical embeddings solely (+radical -char), perfor-
mance drops a little (0.1% to 0.3%) compared to
the model with character embeddings (+radical).

Tying two level embeddings up is a good idea. By
tying radical embeddings and character embeddings
together (+radical +tie), the raw feature is unified
into the same vector space, knowledge is transferred
between two levels, and performance is boosted up
to 0.2%.

http://tool.httpcn.com/Zi/
https://github.com/facebookresearch/fastText
http://www.sighan.org/bakeoff2003/score


VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel neural network
architecture with dedicated pre-training techniques
to learn character and sub-character representations
jointly. As an concrete application example, we
unified Simplified and Traditional Chinese charac-
ters through sub-character or radical embeddings.
We have utilized a practical way to train radical
and character embeddings jointly. Our experiments
showed that sub-character information can enhance
character representations for a pictographic lan-
guage like Chinese. By using both level embeddings
and tying them up, our model has gained the most
benefit and surpassed previous single criterial CWS
systems on 3 datasets.

Our radical embeddings framework can be ap-
plied to extensive NLP tasks like POS-tagging and
Named Entity Recognition (NER) for various hi-
eroglyphic languages. These tasks will benefit from
deeper level of semantic representations encoded
with more linguistic knowledge.
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